Makefiles explained

Parallel Programming, SoSe 2009

SoSe 2009

30. April 2009

Makefiles explained

recap: compiling and linking multiple source files
using make

writing a small Makefile

variables

dependencies

e 6 6 6 o o

parallel builds

Makefiles explained

Recapitulation: Compiling and linking

@ a program is usually split up in several ".c-files’'
@ these are compiled to object-files
@ object-files are linked together to form an executable

@ changes in one source-file may affect several object files

Makefiles explained

The simple approach

@ the simplest way is calling gcc like:
gcc *.c -0 myprogram
@ it may work for very simple projects
@ this approach does not scale well
@ you cannot exclude specific files from being linked

Makefiles explained

The magic of make

@ let's say you have a file 'foo.c’
@ type: make foo
@ Make will compile it into a binary 'foo’

o great! But gcc foo.c -o foo is easy.

Makefiles explained

More source files

foo.c

1|{#include <stdio.h>
2|#include "bar.h”
3
4| int main(int argc,charxxargv){
5 hello ();
6 return O0;
7}
bar.h
1| void hello ();
bar.c

#include <stdio.h>

1
2
3| void hello (){
4
5

}

printf (" Hello_world.\n");

Makefiles explained

Defining dependencies

@ the benefit of Make comes in defining dependencies
@ several .c-files generating several .o-files

@ a first simple '"Makefile' to compile foo.c and bar.c into
'program’:

program: foo.o bar.o
$(CC) foo.o bar.o —o program

N —

The output of 'make’ reads:

$ make
cc -c -0 foo.o foo.c
cc -c -0 bar.o bar.c

cc foo.o bar.o -o program

But how does make know what to do?

Makefiles explained

Defining dependencies

program: foo.o bar.o defines a dependency

one of the c-files changes = make recompiles and relinks
but we still have to write a lot manually :(

foo.0, bar.o and even program are written out twice :(
let's do a better Makefile

e 6 6 o o

Makefiles explained

Defining dependencies

my source and object files:
SOURCES := foo.c bar.c
OBJS := $(patsubst %.c, %.o, $(SOURCES))

default compiler-flags:
CFLAGS=—g —Wall

OCOO~NOUTPWN —

mark targets as "virtual"
10| .PHONY: all

12| # all ’calls’ program
13| all: program

15| # define the target ’program’
16| program: $(OBJS)
17 $(CC) $(CFLAGS) $(OBJS) —o $@

19| # make a clean working dir
20| .PHONY: clean

21| clean:

22 rm —f $(OBJS) program

Makefiles explained

Some notes

a line like "'program:’ defines a target

a target usually generates a file with the target's name

other targets need to be defined as 'PHONY",
to prevent conflicts with files

if there is no rule for the a target to create .o files, Make has
an implicit rule

@ all shell-commands need to be indented using a TAB (not
spaces)

Makefiles explained

Linking against system libs

1| SOURCES := foo.c bar.c

2| OBJS := $(patsubst %.c, %.o, $(SOURCES))
3

4| #generate a list of libs

5|/ LDFLAGS = —Im —lIpthread —lgthread

6| LDFLAGS += ‘gtk—config —cflags * ‘gtk—config —Ilibs
7

8| CFLAGS=—¢ —Wall

9

10| .PHONY: all

11

12| all: program

13

14| # define the target ’program’
15| program: $(OBJS)

16 $(CC) $(CFLAGS) —o $@ $(OBJS) $(LDFLAGS)
17

18| clean:

19 rm —f $(OBJS) program

Makefiles explained

Some notes on variables

@ GNU-make knows two types of Variables
e recursively expanded variables (=):

@ evaluated on each occurence

@ can include references to other variables
@ simply expanded variables (:=):

@ evaluated once when defined

see: http://www.gnu.org/software/automake/manual/make/
Flavors.html

Makefiles explained

http://www.gnu.org/software/automake/manual/make/Flavors.html
http://www.gnu.org/software/automake/manual/make/Flavors.html

More complex dependencies

@ what if there are more #include-statements?
@ what about #ifdef-protected #includes?

@ do | have to specify them all?

@ NO! - use makedepend:

The makedepend program reads each sourcefile in sequence and
parses it like a C-preprocessor, processing all #include, #define,
#undef, #ifdef, #ifndef, #endif, #if, #elif and #else directives
so that it can correctly tell which #include, directives would be
used in a compilation. Any #include, directives can reference files
having other #include directives, and parsing will occur in these
files as well.

Makefiles explained

Linking against system libs

SOURCES := foo.c bar.c
OBJS := $(patsubst %.c, %.o, $(SOURCES))

#generate a list of libs
LDFLAGS = —Im —Ipthread —lIgthread
LDFLAGS 4= ‘gtk—config —cflags * ‘gtk—config —Ilibs '

CFLAGS=—g —Wall

OCOO~NOUTPWN —

10| .PHONY: all
12| all: program

14| program: $(OBJS)
15 $(CC) $(CFLAGS) —o $@ $(OBJS) §$(LDFLAGS)

17| #calculate dependencies:
18| depend:
19 makedepend — $(CFLAGS) — $(SOURCES)

21| clean:
22 rm —f $(OBJS) program

Makefiles explained

predefined variables

make knows some Variables:

1|# common variables like

2

3| CFLAGS= ...

4| LDFLAGS=

5

6| program: $(OBJS)

7 $(CC) $" —o S0

8

9| # $@ - the name of the target

10/ # $~ - the names of all prerequisites
11|# $< - The name of the first prerequisite
12

13|# RM - the rm-command

14|# CcC - C-Compiler

15] #

see info make ;)

Makefiles explained

parallel make

GNU-make can be used to do parallel builds
all dependencies must be properly defined

use make -j <num> to execute make

num specifies the number of parallel processes

Makefiles explained

more info

a german tutorial:

http://www.ijon.de/comp/tutorials/makefile.html
documentation:

http://www.gnu.org/software/automake/manual /make/index.html#Top

Makefiles explained

	Agenda
	Recapitulation: Compiling and linking

